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Abstract 
Over the last project six months, our project activities have concentrated on three areas: 
performing a stochastic inversion of pattern 16 seismic data to deduce reservoir 
permeability, 2) development of the geochemical inversion strategy and implementation 
of associated software, and 3) completing the software implementation of TProGS and 
the geostatistical analysis that provides the information needed when using the software 
to produce realizations of the Midale reservoir. The report partially the following 
deliverables:  
D2: Model development: MCMC tool (synthetic fluid chemistry data); deliverable 
completed. 
D4: Model development/verification: MCMC tool (TProGS, field seismic/chemistry 
data) work product; deliverable requirements partially fulfilled. 
D5: Field-based single-pattern simulations work product; deliverable requirements 
partially fulfilled.  
 
This work has been performed under the auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344  
 

Introduction 
When completed, our completed stochastic inversion tool will explicitly integrate 
reactive transport modeling, facies-based geostatistical methods, and a novel stochastic 
inversion technique to optimize agreement between observed and predicted storage 
performance. Such optimization will be accomplished through stepwise refinement of: 1) 
the reservoir model—principally its permeability magnitude and heterogeneity—and 2) 
geochemical parameters—primarily key mineral volume fractions and kinetic data. We 



anticipate that these refinements will facilitate significantly improved history matching 
and forward modeling of CO2 storage. Our tool uses the Markov Chain Monte Carlo 
(MCMC) methodology. 
 
Deliverable D1, previously submitted as a report titled “Development of a Stochastic 
Inversion Tool To Optimize Agreement Between The Observed And Predicted Seismic 
Response To CO2 Injection/Migration in the Weyburn-Midale Project” (Ramirez et al., 
2009), described the stochastic inversion approach that will identify reservoir models that 
optimize agreement between the observed and predicted seismic response. The software 
that implements this approach has been completed, tested, and used to process seismic 
data from pattern 16. A previously submitted report titled “Model verification: synthetic 
single pattern simulations using seismic reflection data”, Ramirez et al. 2010,  partially 
fulfilled deliverable D3 by summarizing verification activities that evaluate the 
performance of the seismic software and its ability to recover reservoir model 
permeabilities using synthetic seismic reflection data. A future progress report will 
similarly describe summarizing verification activities of the geochemical inversion 
software, thereby completing deliverable D3. 
 
This document includes a chapter that shows and discusses permeability models 
produced by seismic inversion that used seismic data from pattern 16 in Phase 1A. It 
partially fulfills deliverable D5: Field-based single-pattern simulations work product. The 
D5 work product is supposed to summarize the results of applying NUFT/MCMC to 
refine the reservoir model and geochemical parameters by optimizing 
observation/prediction agreement for the seismic/geochemical response to CO2 
injection/migration within a single pattern of Phase 1A/1B. A future progress report will 
show inversion results for the same pattern using geochemical data, thereby completing 
deliverable D5. 
 
This document also contains a chapter that fulfills deliverable D2: Model development: 
MCMC tool (synthetic fluid chemistry data). The chapter will summarize model 
development activities required to facilitate application of NUFT/MCMC to optimize 
agreement between the observed and predicted geochemical response to CO2 
injection/migration.  
 
Lastly, this document also contains a chapter that partially fulfills deliverable D4: Model 
development/verification: MCMC tool (TProGS, field seismic/chemistry data) work 
product. This work product is supposed to summarize model development activities 
required for (1) application of TProGS to Weyburn, (2) use of TProGS within the MCMC 
tool, and (3) application of the MCMC tool to address field seismic and geochemical 
data. The chapter included here fulfills requirements 1 and 2. Requirement 3 will be 
addressed in a future progress report. 



 
Figure 1.1. The orange square shows the location of the pattern where seismic data used 
by our inversion was collected. This pattern is within the Phase 1A area of the Weyburn-
Midale reservoir. Borehole layout provided by Barbara Dietiker (Geological Survey of 
Canada). The red lines indicate the location of the CO2 injector, the blue circles represent 
the WAG injectors and the black lines and circles represent the oil producers. 

Chapter 1: Preliminary Seismic Results, Pattern 16, 
Phase 1A 
We have performed several stochastic inversions using seismic data from pattern 16, 
Phase 1A area. Here we present the results of one of those inversions. Initial results 
suggested the need for improving the method used to generate predicted seismic 
waveforms.  This	  chapter	  will	  also	  describe	  three	  recent	  modifications	  made	  to	  the	  
seismic	  algorithm	  that	  are	  aimed	  at	  increasing	  the	  accuracy	  of	  the	  predicted	  



waveforms.	  	  This	  chapter	  will	  also	  describe	  the	  path	  forward	  regarding	  seismic	  
inversion.	  
	  
Figure 1.1 shows details of the reservoir region considered for this inversion. The region 
consisted of pattern 16, Phase 1A and included a CO2 injector, oil producers and water 
injectors. The size of the region is 1.17 km by 1.17 kilometers by 1.46 km (depth).  
 
The	  initial	  seismic	  algorithm	  implementation	  (Ramirez et al., 2009) used a Ricker 
wavelet to simulate the effects of the source that generated the seismic energy. We are 
now using a wavelet inverted from seismic data shown in Figure 1.2 (wavelet provided 
by D. White, Geological Survey of Canada, personal communication, 2010). This 
wavelet has minimum phase (energy is front loaded), as expected of dynamite explosions. 
The waveforms produced using the field-based wavelet are more accurate than those 
produced with the Ricker wavelet because the former better represents the properties of 
the seismic source. 
 

 
Figure 1.2. Left side shows the field-derived wavelet now used to represent the properties 
of the source when calculating the seismograms. In our previous work, we used a Ricker 
wavelet (right side). Field-derived wavelet provided by D. White (Geological Survey of 
Canada). 
 
We have also re-engineered how the predicted and seismic waveforms are aligned and 
compared. In our seismic application, we need to compare predicted and observed 



waveforms in order to calculate the misfit between the two. This requires that the 
predicted waveform be shifted in time by an amount determined by cross-correlation with 
the observed waveform. The initial implementation cross-correlated the full length of the 
predicted and observed waveforms. We are now only using the part of the waveforms 
that corresponds to the Ratcliffe peak to do the cross-correlation and determine the time 
shift. Also, we increased the time-sampling rate of the predicted waveforms to improve 
the accuracy of the cross-correlation used for waveform alignment.  
 
The third change involves the bulk modulus used by the seismic calculations. Initially, 
we used core measurements of seismic moduli measured in the laboratory (Brown, 2002). 
The graphs on the left side of Figure 1.3 compare two sets of predicted (red curves)  and 
observed (blue curves) waveforms; observed waveforms were measured in 1999, before 
CO2 injection started. Time is increasing from left to right on the graphs. Note that the 
predicted waveforms (red curves) over-predict the amplitude of the peak associated with 
the top of the Midale Vuggy.  
 
 

 
Figure 1.3. Comparison of predicted (red) and observed (blue) waveforms using seismic 
moduli measured in the laboratory (left side) and after adjustment by trial and error (right 
side). 
 
We suggest that the Vuggy peak over-predictions indicate that the core-measured moduli 
over-estimate the strength of the in situ rock because the core measurements do not 
include the effects of large fractures. To test this hypothesis, we manually adjusted the 
Vuggy bulk modulus by trial and error, and calculated the root mean squared (RMS) 
misfit between the observed and predicted waveforms. The RMS misfit reached a 
minimum when the Vuggy’s bulk modulus was reduced by 42%.  The right graphs in 
Figure 3 show examples of waveforms using the reduced bulk modulus. Note the lower 



amplitude of the predicted Vuggy peak. This result suggests that the in situ Vuggy 
limestone is softer than the Vuggy core, probably due to the presence of fractures not 
sampled by the core. We believe that additional work is needed to obtain better estimates 
of reservoir seismic properties, as we will discuss in a subsequent section of this chapter. 
 
We then used the adjusted Vuggy modulus to obtain the stochastic inversion results 
described later in this chapter.  
 
The inversion approach we followed consisted of the following steps; for additional 
details of our	  MCMC stochastic inversion technique, see Ramirez	  et	  al.	  (2009,	  2010). 
First, we generated random realizations of porosity/permeability. In this document, we 
call these realizations reservoir models.  These models honored geostatistical trends in 
Cenovus’ model (provided by Barbara Dietiker, Geol. Survey of Canada) calibrated 
against several decades of production data; these trends identified the statistical 
distributions of porosity and permeability in the reservoir layer, and the correlation 
between porosity and permeability. The realizations consist of porosity and permeability 
fields that vary spatially within each layer while honoring the porosity/permeability 
trends embedded in Cenovus’ calibrated model (Figures 3 and 4, Ramirez et al., 2010). 
The porosity fields proposed honor the bimodal distribution shown by the histogram in 
Figure 3, left side, Ramirez et al., 2010.  The permeability fields honor the distribution 
shown on the right side of Figure 3. The porosity/permeability distributions also honor 
the cross-correlation trends shown in Figure 4, Ramirez et al., 2010. Each realization also 
honored lithology designations and layer boundaries in Cenovus’ model.  
 
The next step consisted of running the flow simulator while honoring the CO2 injection 
and fluid production rates used in the field; this step predicted various reservoir 
parameters such as fluid densities, CO2 saturation and pore pressure for each realization. 
We then predicted seismic velocities throughout the model using the calculated reservoir 
parameters and Gassmann’s equation. The velocity model was then used to compute 
seismic reflectivities and zero-offset, 1D seismograms. The algorithm then compared the 
predicted and observed seismograms, calculated the likelihood function (proportional to 
data misfit), and used the likelihood value to decide whether to accept or reject the 
current realization. Our MCMC stochastic inversion technique will find those 
permeability models that best fit the seismic data and the “prior” constraints (lithology 
boundaries and geostatistical trends).  
 

Results 
We will now discuss permeability models produced by the stochastic inversion. It is 
important to recognize that these results are preliminary due to factors that we describe 
later in this chapter. 
 
The flow simulation assumed that water was injected for 2 years, and that CO2 injection 
started after 0.7 years of water injection. The top row of images in Figure 5 show the CO2 
saturations calculated by the flow simulator after 1.3 years of CO2 injection. The seismic 
data used for the inversion was collected circa December 2001. 
 



 
Figure 1.4. Plot of the likelihood value as a function of iteration. Note that the likelihood 
value is a measure of the similarity between the predicted and observed seismic 
waveforms; more positive values indicate that the predicted waveforms are increasingly 
similar to the observations. Note that a stable value is achieved after about 5000 
iterations. 
 
Figure 1.4 shows a plot of the likelihood value as a function of iteration for the seismic 
inversion run we will show later. The likelihood value is proportional to the data misfit, 
i.e., the sum of the differences between the observed and predicted waveforms (see 
Ramirez et al., 2009 for details). The plot shows that the there are two Markov chains; 
each chains starts at a different point of solution space. The plot shows that likelihood is 
improving and that both chains reach a similar and stable value after about 5000 
iterations. This means that both Markov chains are sampling models that fit the data 
equally well and that any further improvement in the likelihood is likely to be small or 
negligible. In statistical parlance, this means that the seismic inversion has converged 
after 5000 iterations and that the Markov chains are now sampling from the posterior 
distribution, the collection of models that contains the solution to our stochastic inversion 
problem. In other words, we can use models produced after iteration 5000 to obtain a 
statistically reliable estimate of the spatially-variable reservoir permeabilities. 
 
Let’s now look at permeability models from the posterior distribution. The images in 
Figure 1.5 show horizontal slices through the permeability model that best fit the seismic 
data (likelihood function reached a maximum). The top image row shows permeabilities 
and the bottom row shows lithologies. The horizontal slices are located 8 m above, 4 m 
above, 0 m, and 4 m below the location of the CO2 injector; the injector depth at this 
location is approximately 1428 m.  The permeabilities are plotted using a logarithmic 
color scale. Note that the permeabilities range up to values of 150 – 160 millidarcies. The 
largest permeabilities are observed 4 and 8m above the injector. 



 

 
Figure 1.5. The top row of images shows the most likely permeability model identified by 
the MCMC inversion; the most likely model is the model that exhibits the smallest misfit 
between the observed and calculated seismograms. The images on the second row show 
the lithologies present. The image planes are horizontal and located at the elevation of the 
CO2 injector, 4m and 8m above the injector and 4 m below the injector. The CO2 
saturation color bar is at the top right corner of the image. The permeabilities are shown 
in millidarcies, on a logarithmic scale.  
 
We next examine the full ensemble of models in the posterior distribution. Figure 1.6 
shows the mean (top row) and standard deviation (bottom row) of all the permeability 
models in the posterior distribution, i.e., models with iteration number greater than 5000. 
Comparing the top row of images in Figures 1.5 and 1.6, we can see that the permeability 
images are very similar. This suggests that most of the models in the posterior are similar 
to one another. The variability between models can be evaluated by looking at the 
standard deviation images, bottom row of images in Figure 1.5. High permeability zones 
show a permeability of about 120 +/- 25 millidarcies. Intermediate permeability zones 
show a permeability of about 80 +/- 12 millidarcies and low permeability zones show a 
permeability of about  less than 20 +/- 6 millidarcies.  
 



 
Figure 1.6. The images show the mean and standard deviation of all the permeability 
models with iteration number greater than 5000. 
 
The band of large standard deviation along the edges of the pattern is primarily caused by 
a lack of seismic data along the edges. The region of interest has been rotated 45 degrees 
clockwise in order to make better use of the rectilinear grid that the flow simulation 
assumes. After rotation, some of the seismograms near the edges fall outside of the 
computational grid and are not available to constrain the permeability values near the 
edges. The lack of data constraints produces large standard deviation band along the 
edges of the images. 
 
We now look at the differences in the prior and posterior distributions of porosity and 
permeability. Porosity histograms are shown in the top row of Figure 1.7. The top left 
histogram shows the prior porosity distribution for the Midale Marly and Vuggy, i.e., the 
probability distribution that expresses the porosity uncertainty before the seismic data is 
used. This distribution comes from Cenovus’ calibrated model. The top center histogram 
shows the porosity distributions of core data (provided by Erik Nickel, Saskatchewan 
Ministry of Energy and Resources). The top right histogram shows the porosities in the 
posterior distribution, i.e., the probability distribution that expresses the porosity 
uncertainty after the seismic data has been used to guide the search. The bottom row 
histograms show the corresponding permeability distributions. 
 



 
Figure 1.7 shows histograms of porosity and permeability distributions in the Midale 
formation (Marly and Vuggy units are combined in the plots). The histograms on the left 
show the prior distributions used to constrain the inversion; these distributions are present 
in a reservoir model calibrated by Cenovus to match production history at the Weyburn 
field. Histograms based on core data are shown in the center. Histograms corresponding 
to the inversion results are shown on the right side.  
 
These histograms indicate that the MCMC inversion is changing the permeabilities 
indicated by the prior distribution, while the porosity distribution is not changing very 
much. For example, the prior permeability distribution has modes (permeability values 
that have the highest number of observations) of about 20 and 500 millidarcies. In 
contrast, the posterior distribution mode is about 80 millidarcies. This value is also about 
a factor of 8 higher than the mode in the core data distribution. These histograms suggest 
that the seismic data is adding information and value by allowing the MCMC inversion to 
discriminate between the “good” and “bad” permeability realizations.  
 
The prior and posterior porosity distribution both show a mode of 0.1, thereby suggesting 
negible change. This means that posterior probability is mainly informed by the prior 
probability, i.e., the seismic data is not providing new information.  This is probably due 
to the fact that the changes in seismic impedance caused by super-critical CO2	  primarily	  
depend	  on	  the	  spatial	  distribution	  and	  magnitude	  of	  permeability	  and	  less	  on	  the	  
porosity	  distribution.	  
 
 



 
Figure 1.8. Seismogram on the left shows the seismograms measured within the margins 
of pattern 16, indicated by the red rectangle. The red ellipses highlight regions where the 
Marly through and Vuggy peak are well defined and poorly define. The seismogram on 
the left provided by D. White, Geological Survey of Canada. The plots on the right show 
examples of predicted (red) and observed (blue) waveforms. Note that some of the peaks 
are overpredicted. 
 
We consider these results preliminary because there are several factors that degrade the 
accuracy of the results. The thickness of the Midale Evaporite ranges between 1 and 5 m 
in the pattern. The distance between nodes in the flow simulation grid is 4.3 m in the 
depth direction. This means that the Evaporite layer is not continuous in the simulation 
grid and its confining effect is not adequately reproduced during the flow simulations. 
This problem will be fixed in future seismic inversions by forcing the Ratcliffe layer 
(located immediately above the Evaporite) to have the same very low permeability as the 
Evaporite, thereby creating a continuous confining layer above the Midale Marly. An 
alternative approach would reduce the distance between grid nodes from about 4.3 to 1.0 
m in order to accurately reproduce the laterally continuous nature of the Evaporite. We 
did not choose this alternative because our inversion run-times are currently about 12 
days and this change approximately would quadruple the run time. 
 
A second factor is also related to the coarseness of the grid in the depth direction. The 
Midale Marly average thickness is about 6 m. This means that, on average, only one layer 
of nodes is used to simulate flow in the Marly. The coarse node distance may lead to 
inaccuracies in the flow calculations. We are currently conducting flow simulations to 
assess the significance of this issue.  
 
A third factor is best explained by looking at Figure 1.8. The plots on the right compare 
predicted and observed waveforms. The predicted waveforms were calculated using the 
“best likelihood” model shown in Figure 1.5. Note that the peak amplitudes associated 
with the top of the Midale Vuggy are too large relative to the observations. This means 



that the sections of the predicted waveforms that correspond to the Midale Marly and 
Vuggy do not closely match the observations.  This poor fit is observed in some 
seismograms while others exhibit a reasonable fit. 
 
We believe that the primary reason for the sporadically poor fit is that seismic properties 
of the Midale reservoir are spatially variable but our current algorithm assumes 
homogeneous values of bulk modulus, shear modulus and density for each layer. The 
baseline (pre-CO2 injection) seismograms on the left side of Figure 1.8 show that the 
Vuggy peak and Marly trough are well defined in some parts of the pattern and poorly 
defined in others (seismogram provided by D. White, Geological Survey of Canada). 
This variability supports our hypothesis that the seismic properties are spatially variable.  
 
Our proposed fix for this issue is to break up our seismic inversion approach into two 
steps. First, we will propose spatially variable realizations of bulk/shear moduli and 
density.  We will use our MCMC algorithm and the pre-CO2 seismic data to find those 
models that best fit the seismic data. We will then compute the mean and standard 
deviation (bulk/shear moduli, density) for all models in the posterior distribution. We 
believe that this approach will identify seismic property models that are much more 
realistic than the models we currently use for inversion (based on core measurements). 
We think that the new models will properly account for the spatial heterogeneity of 
seismic properties within the reservoir. In the second step, we will use the mean models 
and lock in their seismic properties while allowing only the porosity and permeability to 
change. We will use seismic data collected during CO2 injection to identify the best 
permeability models. We hope that this two-step approach will produce better waveform 
predictions that closely match the observations along the full waveform length. 

Computational Expense 
Perhaps the greatest challenge associated with the use of our stochastic inversion 
approach is its computational expense. Almost all the expense is in running the flow 
simulator that predicts reservoir conditions caused by injection/extraction operations.  
 
The inversion described here required about 5000 iterations for the Markov chains to 
reach convergence.  A total of 28,000 porosity/permeability models were evaluated by 
performing flow simulations for each. About 4000 of the models became part of the 
posterior distribution (i.e., the solution to the stochastic inverse problem), and the rest 
were discarded. Each run used 112 processors, running for about 9 days (processor time). 
The wall clock time needed to complete the run was about 12 days. The wall clock time 
is larger than the processing time because we used a multi-user machine where each run 
is limited to 16 hours of run time; the runs have to be re-submitted and wait in he queue 
for a few hours before execution resumes.  
 

Seismic Inversion Summary 
We have made changes to our seismic modeling approach to improve the accuracy of the 
predicted waveforms. We have also conducted a test of our stochastic inversion approach 
using seismic data from pattern 16, Phase 1A.  The MCMC stochastic inversion 
identified reservoir models (porosity and permeability) that best fit the “observed” 



seismic data. Histograms of prior and posterior permeabilities suggest that the seismic 
data provides information that discriminates between the “good” and “bad” permeability 
realizations. The computational expense is large, requiring about 12 days to complete a 
run.  We have identified a couple of factors that degrade the accuracy of the inversion 
results. The coarseness of the computational grid makes the Evaporite layer to appear 
discontinuous when in reality is continuous across the pattern of interest. We have also 
identified the need to obtain better estimates of seismic properties (bulk and shear 
moduli, density), and propose to do a stochastic inversion to obtain them using the pre-
CO2 injection seismic data. 
	  

Chapter 2: An Approach for the Inversion of 
Geochemical Parameters 
This chapter presents an approach for evaluating the magnitude and spatial distribution of 
geochemical parameters associated with CO2 injection within the Weyburn reservoir.  
These parameters specifically include the rates of dissolution/precipitation reactions 
associated with key mineral phases, and the spatial distributions of these rates and their 
relationship with lithology and permeability distributions.  The proposed approach 
includes: 

1. Constructing a realistic synthetic problem to understand key constraints on water-
rock reactions and effects of heterogeneity; 

2. Applying an inversion algorithm to the synthetic test problem (on a scale 
comparable to a single pattern) to assess efficacy, particularly in the context of 
limited spatial resolution inherent in monitoring data; 

3. Apply the inversion algorithm across a larger scale (i.e., multiple patterns) to 
facilitate comparison with a larger number of monitoring locations. 

 

Reservoir Geochemistry Model 
The Vuggy and Marly units – the permeable constituents of the reservoir – consist 
primarily of dolomite and calcite, with lesser abundances of aluminosilicate minerals 
such as feldspars, illite, and kaolinite.  To posit a plausible geochemical model of the 
reservoir with which to inform the geochemical parameter inversion calculations, the 
brine water quality data set, including baseline data as well as data collected during 
subsequent monitoring events following the commencement of CO2 injection, must be 
reconciled with the inferred mineral abundances and presumed reactivities of key mineral 
phases. 

Monitoring data were collected beginning in August 2000 (Baseline sampling event).  
The Baseline data set as well as data from subsequent sampling events through 
Monitoring 11 (September 2004) were speciated using the PHREEQC geochemical 



model (Parkhurst and Appelo, 1999) to assess the possible impact of CO2 injection across 
the reservoir.  Initial speciation of 328 water complete water samples collected from 
multiple wells during these sampling events indicates that the majority of the samples are 
thermodynamically highly supersaturated with respect to calcite (Figure 2.1), based on 
laboratory-measured pH samples.  It is likely that these samples reflect some off-gassing 
of CO2 under ambient atmospheric temperature and pressure during sample collection, 
recovery, handling, and analysis, resulting in a pH rise and hence calculated calcite 
supersaturation which is not indicative of in situ conditions (Emberley et al., 2005).  This 
explanation is supported by comparing measured pH values with a set of subsequent of 
downhole pH measurements collected during some of the early monitoring events, which 
reveals laboratory-measured pH values that are appreciably higher than those obtained 
via downhole probe at pH values less than 7.0 (Figure 2.2), presumably those samples 
characterized by the highest CO2 partial pressures and hence the most likely to be 
affected by off-gassing. 

To compensate for the loss of CO2, and hence the presumably skewed pH values across 
the 328 samples, PHREEQC was used to acidify individual samples. At a fixed alkalinity, 
this implies the addition of CO2 to the solution composition.  To constraint this 
calculation, log saturation indices for calcite were reduced to +0.3 in a majority of the 
water samples which were initially identified as being highly supersaturated.  The pH in a 
small subset of samples with calcite log saturation indices between +0.3 and +0.5 was not 
adjusted because of difficulty reconciling total alkalinity and bicarbonate alkalinity.  The 
effect of this adjustment on computed pH versus downhole pH and on carbonate 
saturation indices is shown on Figures 2.3 and 2.4, respectively.  This adjusted water 
quality data set comprises the brine chemistry data, including concentrations of dissolved 
CO2, with which reactive transport model results may be compared and hence assessed, 
as discussed below. 

 

Reactive Transport Simulation of CO2 Injection into a Heterogeneous Reservoir 
A geochemical model for the brine chemistry which assumes buffering of solution pH, 
Ca, and to some extent CO2 by calcite and dolomite (and, to a limited extent, the 
concentration of Si by aluminsilicates) was used to inform an idealized reactive transport 
model for a 1-km x 1-km section of the reservoir.  This model was developed to assist in 
constraining the geochemical parameter inversion by providing a plausible CO2 injection, 
dissolution, and reaction scenario which is consistent with measurements (brine 
chemistry data) that can be used as a “synthetic truth data” set with which to test the 
inversion algorithm. 

The model is based on two postulated vertical water injection wells and a horizontal CO2 
injection well which act to perturb the pressure distribution and the geochemistry of the 
reservoir.  Fluid flow, solute transport, and geochemical reactions for the idealized 
problem were simulated using the U.S. Geological Survey’s PHAST simulator (Parkhurst 
et al., 2004).  Although PHAST considers only single phase flow, we have attempted to 
capture the effect of a dissolving supercritical CO2 phase (i.e., additional CO2 mass in the 
system) by creating a fictitious CO2 fluid species that moves with the aqueous phase.  



Mass transfer from the CO2 fluid “phase” to CO2(aq) was assumed to occur if the CO2 
fugacity of the fluid within a given volume element was below a critical threshold value 
(e.g., equivalent to 73 bars).  The molar concentration of the CO2 fluid in water at the 
CO2 injection well of approximately 11 mol/L was based on a CO2 fluid density of 0.5 
gm/mol and a molecular weight of 44 gm/mol. 

Specific model constraints and assumptions included: 

• A uniform grid spacing is employed, utilizing 20-m by 20-m volume elements. 
• The reservoir thickness is 20 m. 
• The permeability field is modeled as Gaussian random field (Figure 2.5). 
• The uniform porosity is assumed to be equal to 0.15 and is unaffected by mineral 

precipitation/dissolution reactions. 
• Constant potential boundary conditions exist on all sides. 
• Initial water chemistry in the reservoir is based on equilibration of the Baseline 

water composition with calcite, dolomite, and albite. 
• For solute transport, the longitudinal dispersivity is 25 m and the transverse 

dispersivity is 5 m. 
• Reservoir mineralogy divided into dolomite-, calcite-, and silicate-buffered 

regions, generated by a Gaussian random field generator.  Anhydrite is assumed 
to be present in some areas as well, overlapping the three. 

• All precipitation/dissolution reactions are modeled as equilibrium reactions, with 
disordered dolomite and all silicate phases constrained as “dissolve-only”.  The 
log saturation index for each phase was selected from a normal distribution about 
0.0 (or +0.3 for calcite), with a standard deviation of 0.25, to mimic variably in 
the equilibrium condition (and hence, as an approximation, variability in the 
mineral precipitation/dissolution rate). 

• An ion exchanger phase is also assumed to co-exist with the mineralogy, 
distributed via correlated Gaussian random field generator 

The model was run for a total of 3,000 days, utilizing a 2-day time step.  Water injection 
occurred for the first 2,000 days, followed by CO2 injection from 2,000 days through 
3,000 days.  Injection rates of 220 m3/day and 95,000 kg/day were assumed for water and 
CO2, respectively, based on average rates, per well, provided in production data. 

Model results are shown on Figures 2.5 through 2.12, including injection pressure (Figure 
2.6), CO2 saturation (Figure 2.7) as calculated using the concentration of the postulated 
fluid CO2 fluid phase, simulated primary mineralogy (Figure 2.8), brine chemistry prior 
to CO2 injection (Figures 2.9 - 2.12), brine chemistry after 1,000 days of CO2 injection 
(Figures 2.13 – 2.16), and a comparison of brine chemistry at simulated monitoring well 
locations with monitoring data (Figures 2.17 – 2.20). 



 
 

 
Figure 2.1.  Calcite and disordered dolomite saturation indices in brine samples collected 
during monitoring events. 
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Figure 2.2.  Laboratory-measured pH versus downhole pH. 
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Figure 2.3.  Calcite and disordered dolomite saturation indices in brine samples, corrected 
by simulated pH decrease/CO2 addition. 

0	  

50	  

100	  

150	  

200	  

250	  

300	  

350	  

-‐2
.5
0	  

-‐2
.2
5	  

-‐2
.0
0	  

-‐1
.7
5	  

-‐1
.5
0	  

-‐1
.2
5	  

-‐1
.0
0	  

-‐0
.7
5	  

-‐0
.5
0	  

-‐0
.2
5	  

0.
00
	  

0.
25
	  

0.
50
	  

0.
75
	  

1.
00
	  

1.
25
	  

1.
50
	  

1.
75
	  

2.
00
	  

2.
25
	  

2.
50
	  

N
o.
	  o
f	  s
am

pl
es
	  

Log	  saturation	  index	  

Calcite	  

Dolomite-‐dis	  



 
 

 
Figure 2.4.  Modeled pH (pH-corrected samples) versus downhole pH. 
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Figure 2.5.  Distribution of reservoir permeability, represented by a Gaussian random 
field. 



 
 

 
Figure 2.6.  Pressure field surrounding CO2 injector. 



 
 

 
Figure 2.7.  Simulated CO2 saturation after 500 days of CO2 injection. 



 
 

 
Figure 2.8.  Simulated distribution of primary mineralogy. 



 
 

 
Figure 2.9.  Chloride distribution at the end of water injection (2,000 days). 



 
 

 
Figure 2.10.  pH distribution at the end of water injection (2,000 days). 



 
 

 
Figure 2.11.  Ca distribution at the end of water injection (2,000 days). 



 
 

 
Figure 2.12.  Mg distribution at the end of water injection (2,000 days). 



 
 

 
Figure 2.13.  Chloride distribution after 1,000 days of CO2 injection. 



 
 

 
Figure 2.14.  pH distribution after 1,000 days of CO2 injection. 



 
 

 
Figure 2.15.  Ca distribution after 1,000 days of CO2 injection. 



 
 

 
Figure 2.16.  Mg distribution after 1,000 days of CO2 injection. 



 
 

 
Figure 2.17.  Simulated monitoring well locations. 



 
 

 
Figure 2.18.  Comparison of Baseline, non-baseline (CO2 injection period), modeled, and 
downhole pH values versus modeled dissolved CO2.  Model results correspond to 
modeled concentrations at monitoring well locations (Figure 2.17) for sampling events 
occurring every 100 days during simulated CO2 injection. 
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Figure 2.19.  Comparison of Baseline, non-baseline (CO2 injection period), and modeled 
Ca concentration versus modeled dissolved CO2.  Model results correspond to modeled 
concentrations at monitoring well locations (Figure 2.17) for sampling events occurring 
every 100 days during simulated CO2 injection. 
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Figure 2.20.  Comparison of Baseline, non-baseline (CO2 injection period), and modeled 
Ca concentration versus modeled dissolved CO2.  Model results correspond to modeled 
concentrations at monitoring well locations (Figure 2.17) for sampling events occurring 
every 100 days during simulated CO2 injection. 
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Inversion of Spatially-Distributed Geochemical Parameters 

The	  reactive	  transport	  model	  used	  to	  posit	  a	  synthetic	  truth	  scenario	  for	  subsequent	  
parameter	  inversion	  tacitly	  assumes	  that	  spatial	  variability	  in	  mineral	  reaction	  rate	  
constant	  for	  a	  specific	  mineral	  can	  be	  approximated	  by	  variability	  in	  the	  value	  of	  the	  
log	  saturation	  index	  or,	  alternatively,	  the	  equilibrium	  constant	  for	  that	  mineral,	  
provided	  that	  the	  reaction	  is	  relatively	  rapid.	  	  However,	  inversion	  of	  the	  field-‐scale	  
geochemistry	  problem	  will	  entail	  estimation	  of	  likely	  reaction	  rates.	  	  As	  such,	  
extending	  the	  equilibrium	  model	  described	  above	  to	  encompass	  reaction	  kinetics	  is	  
an	  important	  step	  in	  developing	  the	  inversion	  algorithm.	  	  	  

As a simple illustration as to how this will be accomplished, we constructed a one-
dimensional reactive transport model based on many of the same brine chemistry 
assumptions described above.  We assumed that three phases– calcite, (disordered) 
dolomite, and albite – exist along the length of the column.  Each phase dissolves (and 
calcite also precipitates) according to a lumped reaction rate (moles of mineral mass per 
second per unit volume of reservoir) in response to its thermodynamic saturation state.  
The distributions of the mineral phases as well as the associated reaction rates are 
assumed to be randomly distributed.  The objective of the modeling was to run one case 
as a synthetic truth and then run a number of subsequent simulations, with different 
random distributions of mineralogy and reaction rates, to test the efficacy of the 
likelihood function in quantifying good or poor matches to the synthetic truth (and hence 
provide a criterion for acceptance or rejection of a trial realization).  The likelihood 
function for a particular geochemical parameter is defined by: 
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where L(x) is a measure of the degree of fit between the model predictions, assuming 
model x, and the observed data, k a normalizing constant, N the number of data points, is 
d(x)pred,i is the predicted data for a given model x, is d0,i the vector of observed 
measurements, σi the estimated data uncertainty, and n ≥ 1. 

The model was based on the one-dimensional reactive transport modeling capability of 
PHREEQC and assumed that a CO2-enriched Baseline brine composition entered the 
column from one end, reacted with the minerals, and exited at the opposite end.  Total 
transport time through the 10-cell column was 200 days.  The likelihood function (Eq.-1) 
was based on comparing modeled concentrations of Ca and Mg in each realization with 
the synthetic truth case, assuming n = 2 and σ = 0.005 for both cations.  The individual 
likelihood functions for Ca and Mg were weighted equally and added together.  Among a 



set of 10 random realizations for the distributions of calcite, disordered dolomite, and 
albite dissolution rates, results for the best match and the worst match to the synthetic 
truth are shown on Figures 2.21 and 2.22, respectively.  The best match among the 10 to 
the synthetic truth (labeled “Baseline”) plotted on Figure 2.22 exhibits a marked 
correlation between the locations along the column where the rate of dolomite dissolution 
is relatively high (i.e., locations where dolomite is abundant and/or is characterized by a 
high specific surface area).  For the full inversion, the inversion approach entails: 

A full three-dimensional portion of the reservoir system, with a permeability structure 
based on the seismic inversion; 

A larger set of mineralogy (mineral dissolution rate) distributions, generated via the 
stochastic engine; 

The capability of using the likelihood function as a means of selecting specific subsequent 
realizations, based on the performance of past realizations. 

 

Figure 2.21.  Example of a good match between a realization and the synthetic truth (note 
alignment of dolomite peaks).  Likelihood function = 1.42. 



 
 

 

Figure 2.22.  Example of a poor match between a realization and the synthetic truth.  
Likelihood function = 0.09. 

	  

	  Chapter 3: Geostatistical Analysis of Vuggy Flow Unit 
Architecture using TProGS 

Introduction 
TProGS is a set of geostatistical analysis software tools that has been recently been added 
to our stochastic inversion algorithm. These tools are used to analyze the  spatial 
variability of the various facies and to generate reservoir realizations that are constrained 
by geological data and knowledge of the geological environment. TSIM, one of the 
TProGS tools, produces reservoir realizations that honor: lithology picks at each well, 
transition probabilities, length and thickness tendencies, and knowledge of the facies 
architecture. The model input required by TSIM is developed by a geostatistical analysis 
of reservoir data. This chapter describes the geostatistical analysis that supports the 
application of TSIM to the Midale reservoir in pattern 16, phase 1A area. 
	  	  
Heterogeneity of porosity and permeability in the Midale “Vuggy” intervals, particularly 
within and between the “shoal” and “intershoal” facies, are known to strongly impact the 
dynamics of enhanced oil recovery by water and CO2 injection into the Weyburn Field 
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(Figure 3.1).  The Midale “Marly” and “Vuggy” intervals are subdivided into “flow 
units” for reservoir modeling (Burrowes, 2006).  In the vicinity of “Pattern 16” of the 
Phase 1A study area, the Marly interval is relatively lower in permeability and more 
homogeneous compared to the Vuggy interval (PTRC, 2004; Whitaker, 2004). Within the 
Vuggy interval, intershoal facies are characterized by extreme heterogeneity and higher 
permeability in contrast to the more homogeneous and lower matrix permeability of 
intershoal facies (Burrowes, 2006). Heterogeneity in the Vuggy interval is expected to 
cause the greatest impact on flow dynamics within the Midale Formation. Thus, our 
geostatistical analysis will concentrate on the spatial variability within the Vuggy unit. 
 
This study evaluates spatial variability of Vuggy flow units using transition probability-
based geostatistical analysis (Carle and Fogg, 1996) and the TProGS software package. 
Seven Vuggy flow units divide the intershoal facies into two flow units (V1 and V2) and 
the shoal facies into five flow units (V3, V4, V5, V6, and V7).  In this study, existing 
databases on core rock properties (E. Nickel, 2009, written communication) and flow 
units (G. Burrowes, 2009, written communication) are merged to evaluate two main 
questions for stochastic model development: 
 

What are the relative impacts of matrix and fracture porosity and permeability on 
flow dynamics within the different Vuggy flow units? 
What is the uncertainty in the three-dimensional (3-D) flow unit architecture? 
 

Understanding of the relative roles of matrix and fracture porosity and permeability is 
necessary to define the relevant parameter space for stochastic flow inversion. For 
example, if both matrix and fracture properties significantly affect flow dynamics, a dual-
continuum computational mesh may be needed to address fracture-matrix interactions, as 
echoed by PTRC (2004, p. 7): 
 

 “Due to the fractured nature of the carbonate reservoir in the Weyburn Unit, 
some consideration should be given to the application of dual-porosity models.” 
 

However, the increased parameter space and computational burden of a dual-continuum 
(or dual porosity) model must be weighed into effective design of stochastic flow 
parameter inversion.  Alternatively, a single-continuum mesh could address an inversion 
parameter space more efficiently by focusing on the dominant flow mechanism – either 
fracture or matrix depending on the rock properties. 
 
The 3-D flow unit architecture is constrained only at borehole locations and, therefore, is 
uncertain in between boreholes.  Depending on the degree of spatial variability of the 
geometry of the flow units, the uncertainty of 3-D flow unit architecture may or may not 
be a major factor in stochastic model development for flow evaluation. This study uses 
geostatistical methods to assess the spatial variability of the 3-D flow unit architecture in 
the vicinity of Pattern 1. This assessment can be used to determine the necessity of 
including variability of flow unit architecture into stochastic flow inversion.  



I  
Figure 3.1. Schematic cross-section showing position of Midale Formation, the Midale 
Marly and Vuggy intervals, and the Vuggy shoal and intershoal facies within the range of 
the Weyburn Field (modified from Burrowes, 2006). 

Data 
The data used in this study consist of two separate borehole data sets, one defining 
locations of flow units and another containing rock properties of core. 

Vuggy Flow Units 
 A database provided by Burrowes (written communication, 2009) contains borehole 
identifications, coordinates, and depths to top of formations and flow units. These data 
are used to measure and model transition probabilities for quantification of 3-D spatial 
variability of seven flow units identified in the Vuggy interval. Additionally, the depth-
to-top information is used categorize core porosity and permeability data by flow unit. 

Matrix Porosity and Permeability 
A core database provided by E. Nickel (written communication, 2009) contains well 
identifications, depths, and rock property data including porosity and permeability. 
Common well identifications and depth ranges were used to extract porosity and 
permeability data specific to the seven Vuggy flow units named as V1 through V7. 
During data processing, it was determined that the V1 and V7 flow units are thin, rarely 
present, and always located on the upper and lower edges of the Vuggy interval and, thus, 



do not substantially contribute to flow within the Vuggy interval. For simplicity, the V1 
and V7 flow units are excluded from the geostatistical analysis of flow unit spatial 
variability. Tables 1 and 2 summarize statistics of V2 through V6 Vuggy flow unit 
porosity and permeability as determined from the combined core and flow unit databases. 
Mean porosity in the Vuggy flow units varies between 0.09 and 0.12, while median 
porosity tends to be slightly lower, varying between 0.08 and 0.11.  The standard 
deviation is 0.05 for all flow units except for flow unit V5, with s =0.08 and a much 
lower number of data. The data indicate similar matrix porosity distributions for all 
Vuggy flow units, similar to the histogram of matrix porosity data shown for flow unit 
V3 (Figure 3.2). 
 
Table 1.  Vuggy flow unit porosity statistics obtained from the core and flow unit 
databases. 
Unit Porosity 

#Data Mean Median Std Dev 
V2 5780 0.12 0.11 0.05 
V3 1012 0.09 0.08 0.05 
V4 2632 0.11 0.10 0.05 
V5 136 0.12 0.10 0.08 
V6 2559 0.09 0.09 0.05 
 
Our evaluation of permeability distributions uses the most prevalent “K-max” data in the 
core database. Permeability data were evaluated on a log10 scale considering the data 
were distributed log-normal and that a geometric mean is representative of effective 
permeability.  Mean log10 permeability in millidarcies (mD) varies from -0.41 to 0.04, 
which equates to 0.47 to 1.09 mD. Median log10 permeability ranges from -0.70 to -0.06, 
which equates to 0.20 to 0.87 mD.  
 
The permeability data histograms are log-normal within each flow unit, with exception of 
the lower values of permeability that cluster at 0.1 mD as a result of limitation of data 
resolution to 0.1 mD. Clustering of permeability data at 0.1 mD is clearly evident in the 
histogram of permeability data for flow unit V3 (Figure 3.3). The limitation of 
permeability data resolution 0.1 mD tends to raise mean values relative to the median, 
which would otherwise be equal in a normal distribution. The median values, therefore, 
are likely better estimates of the geometric mean, because the median value is not 
affected by clustering of low permeability data at 0.1 mD. 
 
The Vuggy interval matrix permeability range of 0.20 to 0.87 mD is far less than typical 
estimates of 10 to 30 mD for effective permeability in the Vuggy interval (PTRC, 2004). 
Given the known presence of fractures in the Midale Vuggy interval, fracture networks 
must dominate permeability and flow dynamics within the Vuggy interval. Fracture 
permeability spatial variability in the Vuggy interval may be compartmentalized within 
Vuggy flow units, particularly shoal flow units in which fractures are more common 
(Whitaker et al., 2006).  Therefore, characterization of fracture flow related heterogeneity 
may remain dependent on spatial variability of flow units, which can be assessed by 
geostatistical methods. 



 
Table 2.  Vuggy flow unit permeability statistics obtained from the core and flow unit 
databases. 
Unit Log10[Permeability(mD)]] 

#Data Mean Median Std Dev 
V2 4499 0.04 (1.09) -0.06 

(0.87) 
0.99 

V3 993 -0.41 
(0.39) 

-0.70 
(0.20) 

0.89 

V4 2341 -0.03 
(0.93) 

-0.11 
(0.78) 

0.94 

V5 115 -0.12 
(0.76) 

-0.22 
(0.60) 

0.88 

V6 2417 -0.33 
(0.47) 

-0.48 
(0.33) 

0.81 

     
 

  
Figure 3.2.  Histogram of porosity data for Vuggy flow unit V3 plotted on a log scale. 



 
Figure 3.3.  Histogram of permeability (K-max) data for Vuggy flow unit V3 plotted on a 
log scale. 
 

Fracture Properties 
Quantitative data on fracture properties for the Vuggy interval are not available.  Fracture 
continuity is known to be major in the NE-SW direction (PTRC, 2004).  Bogatkov  and 
Babadagli (2008) estimate mean  fracture lengths, spacing, and aperature for main and 
secondary fracture networks within flow units. Such information on fracture properties 
could be incorporated as prior information for stochastic flow inversion.     
However, there is ongoing controversy over fracture characteristics, as exemplified by 
opposing views of the relative degrees of fracturing within the Midale Marly interval and 
Vuggy Shoal  and Vuggy Intershoal facies: 
“Note that fractures are most common in the shoal deposits of the Midale Vuggy” (PTRC, 
2004, p. 47) 
“It is clear that the Intershoal Vuggy is the most fractured of the formation, followed by 
the Marly, and finally the Shoal Vuggy” (PTRC, 2004, p. 234)  
Moreover, fracture permeability characterization is complicated by the injection process 
as pressure changes within the reservoirs may open and close fracture systems (PTRC, 
2004, p. 83). 

Analysis of Spatial Variability of Vuggy Flow Units 
In this study, spatial variability of thickness and lateral continuity of Vuggy flow units is 
quantitatively evaluated using geostatistical methods.  The random variables are 
indicators for the presence or absence of Vuggy flow unit at a location x 

{ 7,...,2,1   at present  is unit  flow if 1
at present not  is unit  flow if 0)( VVVkk

kI k == x
xx  

Spatial variability can be measured by the transition probability as a function a separation 
vector (h) 

{ }xhxh at  occurs unit  flow  location at  occurs unit  flowPr)( kgivenltkl +=  



Other geostatistical measures of spatial variability can be used, such as indicator cross-
covariance or indicator variogram, but the transition probability carries as much or more 
statistical information including asymmetrical juxtapositional relationships such as fining 
upward cycles (Carle and Fogg, 1996). 

Vertical Spatial Variability 
Vertical spatial variability is evaluated from transition probabilities between pairs of data 
spaced of different upward separation distances or “vertical lags.”  The calculated 
transition probabilities for Vuggy flow units V2 to V6 are shown by the circled dots in 
Figure 3.4.  The strictly upward layered sequence of V6>V5>V4>V3>V2 yields a 
strongly asymmetric transition probability matrix, with entirely zero values in the lower 
left off-diagonal.  The diagonal entries represent the auto-transitions. Greater mean 
thickness is indicated by less steepness in the slope of the diagonal transition probability 
at zero lag.  The vertical transition probability data suggest mean flow unit thicknesses of 
infinity (V2), 1.08 m (V3),  3.01 m (V4),  0.43 m (V5), and  3.76 m (V6) . The zero slope 
at tV2-V2(0) is caused by assumed upper termination of the Vuggy  interval at the top of 
the V2 flow unit. The inferred mean thickness of infinity for V2 is an artifact of the 
analysis because data for calculation of the V2 vertical auto-transition probability, tV2-

V2(hz), are always contained within the V2 flow unit, while geostatistical measures of 
spatial variability assume, in theory, infinite boundaries. 
 
The solid black line in Figure 3.4 represents a Markov chain model fit to data at the first 
non-zero lag of 0.5 m. A Markov chain is a simple stochastic model represented by a 
matrix exponential function which has found widespread applicability in facies 
architecture modeling (Carle et al., 1998; Weissmann et al., 1999). If spatial variability is 
Markovian, transition probability measurements will tend to fall on the solid line. While 
the Markov chain successfully implements asymmetry evident in the measured transition 
probabilities, the Markov chain does not closely fit measured Vuggy flow unit vertical 
transition probabilities at each lag.  The differences between measured and Markov chain 
transition probabilities indicate a more uniformly layered carbonate system compared to 
more Markovian spatial variability pattern typical of alluvial or fluvial deposits. 



 
Figure 3.4.  Vertical transition probability matrix for V2-V6 Vuggy flow units, with dots 
representing measured data and solid line representing a Markov chain model fit to data 
at first non-zero lag (0.5 m). 

Lateral Spatial Variability 
Lateral spatial variability in geologic data is generally more difficult to measure than 
vertical spatial variability because of data sampling patterns (typically along vertical 
boreholes), variable dip angles (structure), and inaccurate vertical control.   Inevitable 
lateral sparseness in subsurface data spacing leads to greater error in measurement of 
spatial variability in lateral directions compared to vertical. To minimize effects of dip 
angles, the vertical scale unit for the data was converted to depth below the top of the 
Vuggy interval.  In this manner, structural controls causing variable dip of the Vuggy 
interval are largely removed so that lateral correlation can be evaluated with correction 
for dip structure.  Without a structure correction, lateral spatial correlation of Vuggy flow 
units will be underestimated. In practice, lateral spatial correlation is very difficult to 
quantitatively measure without many closely-spaced boreholes. 



At Weyburn, however, the numerous boreholes, high lateral continuity (compared to 
alluvial or fluvial systems), and consistent geologic interpretation are unusually 
conducive to quantitative evaluation of lateral spatial variability of the Vuggy flow units.  
The lateral-direction transition probabilities shown in Figure 3.5 were calculated 
assuming isotropy (radial symmetry) in the lateral plane. The lateral isotropy assumption 
reduces measurement error by accumulating more data pairs for calculation of transition 
probability at the specified lags.  Other evaluations of lateral transition probabilities were 
made assuming preferential directions in the northwest or northeast directions, resulting 
in little difference in measured transition probabilities.   
 
The data are sufficient to detect lateral correlation scales and juxtapositional tendencies 
for the Vuggy flow units.  Mean lengths in the lateral direction are 1537 m (V2), 199 m 
(V3),  317 m (V4),  94 m (V5), and 1034 m (V6).  The measured lateral transition 
probabilities indicate tendency of flow units to juxtapose laterally to the vertically 
adjacent flow units (e.g. V3 tends to be justaposed laterally adjacent to V2 or V4), except 
for lateral transition to V5 which is of very low proportions.   
 
The flow unit architecture is dominated by flow units V2, V3, V4, and V6.  Two Markov 
chain models were constructed: (1) from data at the first non-zero lag of 200 m (dashed 
lines) and(2) typical practice of fitting a model (solid lines) to transition probabilities of 
all but one category (here, fitting to V3, V4, V5, and V6 and prescribing V2 as 
“background”) and prescribing proportions indicated by the data. In both cases, the lateral 
transition probability models do not fit the data at larger lags, suggesting that a stationary 
Markov model with or without assuming fixed proportions cannot fit the transition 
probability at all lags. This is not surprising because of the monotonically layered nature 
of the flow unit architecture.  
 
 
 
 
 
 



 
Figure 3.5.  Lateral transition probability matrix for V2-V6 Vuggy flow units, with dots 
representing measured data, dashed line representing a Markov chain model fit to data at 
first non-zero lag (200 m), and solid line another Markov chain model fit to V3-V6 
transition probability measurements. 
 

Geostatistical Simulation of Vuggy Flow Unit Architecture  
Development of a stochastic model such as a Markov chain enables geostatistical 
simulation of multiple “realizations” or equally probable three-dimensional distributions 
of the categorical variables (e.g., flow units) that honor both fixed data (e.g., flow unit 
interpretations at boreholes) and the bivariate spatial statistics (e.g. transition 
probabilities).  Here we use the TSIM code (Carle, 1996) to generate realizations of 
Vuggy flow unit architecture conditioned to borehole flow unit data near Pattern 1.  
The1-D Markov chain models for the vertical and lateral directions are used to develop a 



3-D Markov chain model for the TSIM simulation algorithm (Carle, 1996; Carle and 
Fogg, 1997).   
 
Figure 3.6 shows two realizations generated by TSIM conditioned to six boreholes near 
Pattern 1 with Vuggy flow unit architecture determined by the 3-D Markov chain model 
derived from borehole flow unit data. The realizations generally preserve the monotonic 
vertical sequence of V2, V3, V4, and V6 flow units. Lateral continuity is extensive in 
these two and another eight realizations not shown, indicating that the flow unit 
architecture near Pattern 1 is consistently layered for the V2, V3, V4, and V6 units.  The 
different realizations have spatially varying flow unit thicknesses, but the main portions 
of V2, V3, V4, and V6 flow units remain entirely or nearly continuous in the lateral 
direction.  These simulation results suggest that discontinuities in flow units, which might 
explain preferential flowpaths, are not likely to occur near Pattern 1. 

Conclusions and Recommendations 
Conclusions and recommendations from this study include:  
(1) Mean matrix porosity is uniform between different flow units in the Vuggy interval, 
and matrix permeability is low relative to the fracture permeability in the Vuggy interval.  
(2) With the exception of three minor Vuggy flow units (V1, V5, and V7), the four major 
Vuggy flow units (V2, V3, V4, and V6) are relatively uniformly layered within the 
Pattern 1 area and, therefore, the 3-D flow unit architecture is tightly constrained as four 
continuous layers of flow units V2, V3, V4, and V6. 
(3) Given much higher permeability and uncertainty in permeability structure for fracture 
flow relative to matrix flow, stochastic modeling for flow evaluation in Pattern 1 should 
focus on fracture property heterogeneity.  
(4) Based on this study, a reasonable approach to stochastic flow inversion at Pattern 1 
would be to fix matrix properties and geometry for the Marly interval and Vuggy flow 
units V2, V3, V4, and V6 flow and invert on fracture properties using a dual-continuum 
mesh.  Much challenge remains in characterization of fracture properties in the Midale 
Formation. 



 
 
Figure 3.6.  Two realizations generated by TSIM conditioned to six boreholes near 
Pattern 1 with Vuggy flow unit architecture determined by the 3-D Markov chain model 
derived from borehole flow unit data.
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